Appraising the true value of Decision – Making Process for Tooth Retention or Extraction

by Prof Dr med dent Liviu Steier

Avila et al. state that the decision tree introduced “...was developed upon available scientific literature”. This last phrase may be misleading to the general dental practitioner. The author of the current paper has written this paper to avoid confusion among the profession.

Scientific papers published in peer reviewed journals should have a similar framework:

• Introduction – to emphasise the topic / question / hypothesis raised by the paper.
• Methods – to explain the approach, topic / question that should be highlighted.
• Results – to describe the findings / results / answer and present them.
• Discussion – to explain the importance / significance of the findings / answer and put in context with the evidence by analysing own methodology and compare with available data and knowledge; if need of further work has been identified this of contemporaneous papers.

The paper published by Avila et al, in 2009: “A novel decision – making process for tooth retention or extraction” in the JOP is intended as “...a reference guide for dentists when making the decision to save or extract a compromised tooth”.

Who wrote this paper?
The paper has been written by multiple authors with different backgrounds:


What is the goal?
The authors’ intention was to offer “...a reference guide for dentists when making the decision to save or extract a compromised tooth”.

Why has this paper been published?
Fast on-going research has extended multiple fold treatments options in modern Dentistry: Biotissue - and Biofilm engineering, three dimensional diagnosis (radiology), CAD CAM technique as well as dental materials ensure more support for diseased hard and soft tissue. Reviewing treatability in the context of disease stadium was the major goal of the paper.

When was the paper published?
The paper was published in Volume 80 of The Journal of Periodontology in 2009. It is of major importance for the general practitioner with limited time availabilities and a restrained access to the literature to be offered updated complex decision taking instruments.

Where was the paper published?
The paper has been published in the official organ of the American Academy of Periodontology. The review methodology of this journal guarantees the highest professional confidence.

130 papers have been referenced by the authors. The refer-
Dentistry

• Journal of Prosthodontics - 4
• Journal of Prosthodontics Research - 9
• Journal of Periodontology - 57
• Journal of Clinical Periodontology - 24
• Periodontology 2000 - 5
• International Journal of Periodontics and Restorative Dentistry - 1
• Annals of Periodontology - 1
• Scandinavian Journal of Dentistry - 1
• Australasian Endodontic Journal - 1
• International Journal of Oral Maxillofacial Surgery - 1
• Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology - 2
• Acta Odontologica Scandinavica - 2
• Dental Clinics of North America - 1
• Journal of Dental Research - 1

The discussed paper can be considered a helpful but not exclusive tool for general practitioners when evaluating treatment options for diseased teeth. Multidisciplinary decision making enhancements should be offered to the profession to guarantee highest level of evidence. Addition of case difficulty assessments to differentiate between treatments options performed by general practitioners and specialists will complement the presented reference guide.

Correct and comprehensive appraisal of literature published and used by the profession is mandatory. It should be taken as highly recommended advice to never rely on non-critically appraised papers no matter from which source of publication.

The authors successfully managed to build a first decision tree for the general practitioner when appraising the question: to save or to extract?

Results

Avila et al. have built a “color-based decision-making chart with six different levels...” which they present to their readership.

Conclusion

The task to decide on the save ability of tooth is a multidisciplinary decision. The authors have taken the profession a great step forward by analysing decision criteria from different specialties. Out of 150 referenced papers, 67 were written by periodontists, five by prosthodontists, six by endodontists and one by an orthodontist, etc. This is an uneven distribution.

As an example: Endodontics has come a long way in the past decade to offer a wide variety of treatment options for compromised teeth. The panel of authors should have been expended by the expertise and the knowledge of an endodontist.

The authors successfully managed to build a first decision tree for the general practitioner when appraising the question:
A prevention-based approach

Mhari Coxon looks at moving your practice to prevention-based dentistry as best practice

Warning – this is not an evidence based clinical abstract. This is an article based on 15+ years of experience in practice growing and developing, providing a preventative regime that empowers both your team and the client in a profitable manner. Those who have the perfect preventative based practice can thankfully stop reading now (that doesn’t include you know, there is always room to improve).

Changing attitudes

Dentistry has been a ‘see the problem - name the problem - fix the problem’ profession for a very long time. We were conditioned that way while in our safe institutions and find it hard to move to a preventative approach to our health care when we transition to general practice and the time constraints and attitudes that come with it.

With growing evidence showing common sense links with our systemic health (if you had an inflamed, suppurating, bacteria covered area on your arm the size of an egg you would expect to feel ill so why would it not be the same for the same size lesion in the month??) and our oral health we as a profession need to improve our prevention led practice. This is clearly best practice.

“But we do it already” I hear us all cry. “You are reinventing the wheel Mhari!” If this was the case then the incidence of periodontal disease and caries in the population would be decreasing, as would the incidence of litigation against dental professionals in relation to periodontal issues and undiagnosed caries. It is not easy to look at what we are not doing and seek to improve but it is the only way we, as clinicians and as practices can develop and progress.

The right foundations

The first time your patient spends time in your practice will affect how they feel about treatment and how happy they will be at the end of treatment. How much time have you been to see a consultant or specialist and forgotten all the things you wanted to ask. “White coat syndrome” can happen to the best of us so why should our patients be immune? Using staff to provide a supportive and informative role can make the patient happier and your day as a dentist more rewarding.

Examples of questionnaire questions: When was that last time you had any dental treatment? What was your main reason for your visit today? Do you feel you have good dental health? Do your gums bleed? Are you sensitive to hot/cold/sweet? Do you have any worries about your mouths or treatment?

Big up your team

It is difficult to appreciate the role of preventative treatment as a patient and it is vital that you convey that importance and the skills of your team if you want to have a success with that client.

For more information, contact BioHorizons Customer Care: +44 (0)1344 752560 or visit us online at www.biohorizons.com
ent’s behavioural change and treatment acceptance. Do you think saying “you have some gum problems and the hygienist will see you for a scale and polish” conveys a preventative message? Does that show that the patient has a “problem” that he cannot work. He also explains how the biggest health benefit we can give patients is their oral health assessment and advice programme, which always follows an examination and is a key to any further treatment. If you as “The Dentist” are telling them they need this then they will feel it has some value and are more likely to be open to advice from your team.

**Communication prevention**

So, how do we change our patient’s behaviour? By changing our own behaviour of course. If we were saying RIGHT now in practice worked, then almost all our patients would be regular maintenance patients with a good level of understanding of their health and stability in their oral health for the majority. If this is not the case then what have you got to lose by trying something new? Communication at that initial examination can make all the difference. It doesn’t need to be a long session, you just have to fine-tune how you talk and listen to patients. Some good rules are:

- If you ask a question, RE-ALLY listen to the answer...and don’t interrupt!! (harder than it sounds, I know)
- Ask about the patient’s knowledge or experience. Does that show that what we were saying RIGHT now makes sense to them. Are you sure they understand the message you are trying to convey?
- Praise the talents of your team. “Sell” their care to your patients and watch as your treatment acceptance increases with little effort.

**A picture speaks 1000 words**

Every working environment is different and has restrictions, but preventative dental care is very cost-effective so we do not have an excuse as a profession. For those with good budget to change the practice dynamics, you will save time and increase compliance with the addition of a microscope. This should be linked to a live screen so the patient can see what you see. Taking a sample of your patient’s plaque and showing them what is growing there is very powerful and motivating. Backing this up with a few photos of inflamed gum or early decay with an explanation can be all it takes to get that oral health advice appointment booked.

**Be positive**

We all respond better to positive suggestion as a rule and so how we discuss this with the patients can affect their attitude towards their health and your team’s part in it. I do not like to be lectured or scolded by anyone - an automatic wall comes up; so why would I use this method with my patients. Yes there are “problems” in their mouths. Yes you can “name” those problems. But you and your team cannot “fix” their problems. You can help the patient to find solutions and attain and maintain health. This is ultimately more beneficial than fixing the problem then trying to modify the behaviour. That is like feeding the donkey the carrot and then asking it to carry the load.

**So to summarise:**

Use your team to glean information and discuss patient needs, fears and expectations; Question the patient gently to develop conversation about their health; Emphasise the importance of prevention in dental health and the benefits of this; Show your patients what is happening; Be positive, explain that they can make a difference with their home routine; “Sell” your team and their part in preventative care in the practice.

Obviously, if the patient is immediate pain or risk then this should be dealt with. Otherwise resist carrying out treatment until the preventative routine has been introduced.

For any questions please email me at mhari.coxon@cpdfordcp.co.uk
Application of PAD in clinical dentistry and the literature evidence

Liviu Steier takes a closer look at Photo Activated Disinfection and its uses in differing areas of clinical dentistry

Spread of antibiotic resistance among pathogenic bacteria is alarming the medical science. Inappropriate prescription of antibiotics in the dental profession could add to this. Oral bacterial infection can commonly be considered of local origin. Several attempts have been undertaken in dentistry to try and maintain antimicrobial treatment regimens restricted locally.

The combination of dyes and visible light has proven to kill microorganisms about 100 years ago. Harmless dyes sensitive to light are delivered locally (soft and hard tissue) and exposed to light at certain predetermined wavelength are highly successful in disinfection. Key is presence of oxygen to excited state of the Photosensitiser enhancing transfer of electrons to the ground state of molecular oxygen resulting in reactive oxygen like singlet oxygen and hydroxyl radicals. The latest two have lethal effect on pathogenic microorganisms. The process described is called photo activated disinfection when related to dentistry. Resistance to Photo Activated Disinfection (PAD) has been researched in periodontology but could not be induced artificially (Lauro et al. 2002).

Dai et al. (2009) reviewed literature on Photodynamic therapy (PDT) in regards to localised infections. Key points of interest were:
- Photosensitisers and their interaction with different bacterial strains.
- Photodynamic therapy at different tissue structures.

As a result one can state that bactericidal action was achieved by neutral or cationic PS molecules on Gram positive flora when compared to cationic in combination with non cationic ones on Gram negative (Nitzan et al. 1992, Merchat et al. 1996., Santamaria et al. (1972) listed more than 400 compounds demonstrating photosensitizing properties. Usacheva et al. has proven in 2001 that: “TB exhibits a greater bactericidal activity than MB against most bacteria in dark and light conditions.”

Cohen et al. (1995) cited by Mensel et al. (2005) summarised the photobiological principles of light involved in the process:
- The Grotthus-Draper law: discusses the wavelength of light requested.
- The Stark-Einstein law: discusses intensity and duration of light applied.
- The Bunsen-Roscoe law: discusses the amount of absorbed light.
Meisel and Kocher identified in their review 2005 the “pre-requisites and further demands” in regards to PAD in Periodontology: suitability of the photosensitising dyes, optimisation of efficacy, determination of irradiation device as well as exposure time, etc.

Today PAD can be regarded as a helpful adjunct in biofilm management. Its indication in clinical dentistry varies from Cariology to Periodontitis covering Endodontics and Periodontology.

Application in Perio

Use of PAD in Periodontology is multifaceted as an adjunct after non-surgical or in conjunction with surgical approaches.

Interestingly, Aazarpazhooh et al (2010) performed a systematic review and meta-analysis for the use of PAD in Periodontology and concluded: “PDT as an independent treatment or as an adjunct to SRP was not superior to control treatment of SRP. Therefore, the routine use of PDT for clinical management of periodontitis cannot be recommended.”

Once one understands mechanisms of action of PAD, as briefly discussed above, and starts to critically appraise the systematic review performed by the group of Aazarpazhooh et al. a major shortcoming becomes eminent – there was no appraisal of the studies included, in regards of suitable selection of photosensitiser, adequate light source and timing. Correct conclusion would have referred to the kind of PS used and the question if photobiological principles of light have been disregarded.

It is sad to admit that even applying the highest criteria for appraisal according to the Cochrane library one may generate confusing conclusions if authors are not familiar with the review topic.

In 2009, Ramos de Oliveira et al. managed to demonstrate a statistically significant reduction in TNF-a level 50 days following treatment when PAD used without SRP. Similar results were achieved by Graham et al. (2009).

An in vivo study by Siguich et al. (2010) showed “that the adjuvant application of the described PDT method is appropriate to reduce periodontal inflammatory symptoms and to successfully treat infection with F. nucleatum.”

The results of Allan et al. (2007) using Toluidine blue “indicate that PDT may be an effective alternative to conventional modalities in the treatment of periodontal disease.”

Andersen et al. (2007) compared the use of Pad to SRP and concluded that “Within the limits of the present study, it can be concluded that SRP combined with photodisinfection leads to significant improvements of the investigated parameters over the use of SRP alone.”

Milanezi de Almeida et al. (2008) compared periodontal bone loss in rats by ligature and treated with PAD. Their conclusion: “PDT may be an effective alternative for control of bone loss in furcation areas in periodontitis.” Kimerer et al. (2003) researched the lethal action of Toluidine blue as PS on Porphyromonas Gingivalis and concluded “The results of this study show that Toluidine blue-mediated lethal photosensitisation of P. gingivalis is possible in vivo and that this results in decreased bone loss. These findings suggest that photodynamic therapy may be useful as an alternative approach for the antimicrobial treatment of periodontitis.”

Application for treatment of Peri-implantitis

Hayek et al. (2005) published a study comparing conventional therapy versus PAD for treatment of ligation induced peri-implantitis in dogs. They concluded that the non invasive PAD technique could be used to reduce pathological microwear- ganism in peri-implantitis.

Shibli et al. (2005) examined the efficacy of PAD application alone in ligation induced peri-implantitis in dogs and concluded that complete elimination of pathogens was achieved in some cases. Dorthubak et al. (2001) researched microbial decontamination on peri-implantitis affected IMZ implants in vivo and identified a significant reduction after PAD.

Baron et al (2000) reviewed 29 papers on regenerative methods in regards to regeneration of peri-implantitis affected sites and concluded: “Of all tested treatment methods, the combination of guided bone regeneration and augmentation with demineralised freeze-dried bone resulted in the most favorable results regarding bone gain and resorptive gration.”

Application in Cariology

Williams et al (2002) researched the bactericidal efficacy of Toluidine blue and variable energy on Streptococcus mutans. The results were extremely encouraging: “The system was highly effective in killing TBO-treated Streptococcus mutans NCTC 10449 in stirred planktonic suspension, killing at least 109 cfu/ml. Antibacterial action increased as the delivered energy dose increased.”

The study of Lima et al. (2009) “evaluated the effect of PACT (Photodynamic anti- microbial therapy) on dentine caries produced in situ.” They came to the following conclusions: “PACT was effective in killing oral microorganisms present in dentine caries produced in situ and may be a useful technique for eliminating bacteria from dentine carious lesions before restoration.”

Steier et al. researched the efficacy of PAD bone root canal dentine previously infected with Enterococcus Faecalis mononuclear Biofilm. Especially with today’s trends of antimicrobial intervention and using adhesive dentistry the use of PAD may prevent excessive hard tissue removal and help maintain great amounts of dentin. Major benefit of course is the conservation on tooth vitality.

Application in Endodontics

An in vivo study performed by Bonso et al. (2006) concluded that “Results indicate that the use of a chelating agent acting as a cleaner and disrupter of the biofilm and photo-activated disinfection to kill bacteria is an effective alternative to the use of hypochlorite as a root canal cleaning system.”

Another in vivo study published as well in 2006 by the group of Bonsor researched the ability of PAD to compliment conventional RCT disinfection and concluded that “The PAD system offers a means of destroying bacteria remaining after use conventional irrigants in endodontic therapy.”

Williams et al. (2006) tested the efficacy of PAD on Fusobacterium nucleatum, Pepto-streptococcus micros, Prevotella intermedia and Streptococcus intermedius and concluded that “PAD killed endodontic bacteria at statistically significant levels compared to controls.”

Garcez et al. (2008), in an in vivo study, researched the “Antimicrobial Effects of Photodynamic Therapy on Patients with Necrotic Pulps and Apical Lesion” and their results suggested “that the use of PDT added to endodontic treatment leads to an increase of tissue response to bacterial load and may be an appropriate approach for the treatment of oral infections.”

The research hypothesis of Bergmans et al. (2007) was: “To test the hypothesis that photoactivated disinfection (PAD) has a bactericidal effect on pathogens inoculated in root canals, with emphasis on biofilm formation/erosion.” Their conclusions were: Photo-activated disinfection is not an alternative but a possible supplement to the existing protocols for root canal disinfection as the interaction between light (diode laser) and associated dye (TBO) provides a broad spectrum effect.

The research goal of Garcez et al. (2006) was “To compare the effectiveness of antimicrobi- al photodynamic therapy (PDT), standard endodontic treatment and the combined treatment to eliminate bacterial biofilms present in infected root canals.”

Their results: “Endodontic therapy alone reduced bacterial biofilminescence by 90 per cent while PDT alone reduced biofilminescence by 95 per cent. The combination reduced biofilminescence by >98 per cent, and importantly the bacterial re- growth observed 24 hours after treatment was much less for the combination (P<0.0005) than for either single treatment.”
The in vitro study of Soukos et al. (2006) ended with the conclusion that “PDT may be developed as an adjunctive procedure to kill residual bacteria in the root canal system after standard endodontic treatment.”

Pinheiro et al. (2007) study was to “evaluate photodynamic therapy in deciduous teeth with necrotic pulp by means of fully quantifying viable bacteria, before and after instrumentation and after the use of photodynamic therapy.” They concluded that “Photodynamic therapy is recommended as adjunct therapy for microbial reduction in deciduous teeth with necrotic pulp.”

When using Methylene blue as PS, Fimple et al. (2008) concluded “that PDT can be an effective adjunct to standard endodontic antimicrobial treatment when the PDT parameters are optimised.”

The research group around Lim (2009), calling the PAD process “Light Activated Disinfection” (LAD) used “biofilms of Enterococcus faecalis at two different stages of maturation” and extracted teeth. The results of the study showed “Sodium hypochlorite and improved LAD showed the ability to significantly inactivate bacteria in four-day-old biofilms when compared to the control and LAD (p < 0.05). Inactivation of bacteria from deeper dentine was higher in improved LAD than sodium hypochlorite. In four-week-old biofilms, a combination of chemomechanical disinfection and improved LAD produced significant bacterial killing compared to either chemomechanical disinfection or improved LAD alone.”

Souza et al (2010) compared the efficacy of Methylene blue and Toluidine blue as an adjunct in root canal disinfection. Their conclusions were “These in vitro results suggest that PDT with either MB or TB may not exert a significant supplemental effect to instrumentation/irrigation procedures with regard to intracanal disinfection. Further adjustments in the PDT protocol may be required to enhance predictability in bacterial elimination before clinical use is recommended.” It may be noted that the culture media for E. faecalis may play a role in the different outcomes.

Based on current knowledge and evidence the author suggests the implementation of PAD in root canal disinfection once conventional protocol completed.

Conclusion
PAD is not at all a new concept. It has proven its efficacy in action over almost the last hundred years. New microbiologic knowledge is continuously compensated with advanced research in light emitting sources. Intensive work is committed into the identification process of correlating adequate PS to specific bacterial infection, enhancing dye penetration, adjusting light exposure time, etc.

On the other side numerous new applications arise. Confirming treatment efficacy is a demanding and highly time-, resource- and finance-consuming process. Rewards are amazing taking under consideration the huge added benefits in regards of antibiotic resistance.

The in vitro study of Soukos et al. (2006) ended with the conclusion that “PDT may be developed as an adjunctive procedure to kill residual bacteria in the root canal system after standard endodontic treatment.”

Pinheiro et al. (2007) study was to “evaluate photodynamic therapy in deciduous teeth with necrotic pulp by means of fully quantifying viable bacteria, before and after instrumentation and after the use of photodynamic therapy.” They concluded that “Photodynamic therapy is recommended as adjunct therapy for microbial reduction in deciduous teeth with necrotic pulp.”

When using Methylene blue as PS, Fimple et al. (2008) concluded “that PDT can be an effective adjunct to standard endodontic antimicrobial treatment when the PDT parameters are optimised.”

The research group around Lim (2009), calling the PAD process “Light Activated Disinfection” (LAD) used “biofilms of Enterococcus faecalis at two different stages of maturation” and extracted teeth. The results of the study showed “Sodium hypochlorite and improved LAD showed the ability to significantly inactivate bacteria in four-day-old biofilms when compared to the control and LAD (p < 0.05). Inactivation of bacteria from deeper dentine was higher in improved LAD than sodium hypochlorite. In four-week-old biofilms, a combination of chemomechanical disinfection and improved LAD produced significant bacterial killing compared to either chemomechanical disinfection or improved LAD alone.”

Souza et al (2010) compared the efficacy of Methylene blue and Toluidine blue as an adjunct in root canal disinfection. Their conclusions were “These in vitro results suggest that PDT with either MB or TB may not exert a significant supplemental effect to instrumentation/irrigation procedures with regard to intracanal disinfection. Further adjustments in the PDT protocol may be required to enhance predictability in bacterial elimination before clinical use is recommended.” It may be noted that the culture media for E. faecalis may play a role in the different outcomes.

Based on current knowl-
References


Interdental Cleaning: the path to better oral hygiene for patients
Helmut Nissen discusses the next generation of cleaning products

One of the most important parts of the job of any dental practitioner is the education of their patients with regards to maintaining a good oral care regime. Some of the most important parts of the mouth in this respect are the interdental areas, which experts agree are an ideal breeding ground for pathogenic bacteria and a high-risk area for the development of caries. The self-care regimens taught by practitioners are crucial in the prevention of gum disease, but patients can struggle to maintain their good work outside of the dentist’s office and often slip back into bad habits. Worryingly, the British Dental Health Foundation now estimates that a mere 21 per cent of the British public use dental floss.

In recent years, researchers have amassed a body of evidence to substantiate claims about the links between oral and other diseases, including, but not limited to, diabetes, cardiovascular disease, dementia and strokes. In trials conducted by the Northern Manhattan Stroke Study (NOMAS) links between oral infection and the onset of a stroke have been examined. Seventy eight people of mixed ethnicity (Caucasian, Hispanic and Afro-American) who resided in the same community and had never suffered strokes, received detailed oral examinations. These included measurement of probing depth and attachment loss at six sites per tooth as well as an ultrasound measurement of the carotid arteries. It was duly noted that those with the most severe periodontal disease also showed the greatest thickening of the arteries. These results remained consistent, even when known cardiovascular risk factors were accounted for, including hypertension, diabetes, and cholesterol levels. It has been noted that many patients contract some kind of infection shortly before suffering a stroke, and this provides a link between periodontal disease and cardiovascular disease. The results suggest that infections such
Interproximal Cleaning
With evidence for the connection between oral health and cardiovascular disorders, interproximal cleaning is at the top of many dental researchers’ priority lists. In light of up to date research, recent studies have attempted to assess the oral health benefits of regular interproximal cleaning both alone and with the addition of specially formulated gels. These studies focused on the effects of daily use of a fluoride-based gel with chlorhexidine (0.2 per cent sodium fluoride (900ppm) and 0.2 per cent chlorhexidine digluconate), applied with an interdental brush.

The University College of Health Sciences, Kristianstad, with the Department of Cariology, Göteborg University in Sweden, carried out a double-blind crossover design trial, which used an active gel as well as a placebo. In this trial 15 healthy patients with at least four open approximal spaces in the pre-molar/molar region were chosen from the Department of Periodontology in Kristianstad and clinical parameters were registered at eight approximal tooth surfaces: Plaque index after using a disclosing solution, pocket depth, sulcus bleeding index and gingival fluid flow using a periotron.

Participants were asked to use the gel after brushing, applying it with an interdental brush twice a day, ensuring that each interproximal space was cleaned twice. Results were assessed as mean values at three points within the trial – on days 0, 7, and 21. From the very beginning of the trial a noticeable improvement was shown in all four parameters. The study concluded that three weeks of interdental brushing combined with an interdental gel could significantly improve oral health as well as helping to prevent the build up of plaque.

Those patients predisposed to plaque and caries are known to benefit from a dual action formula created to strengthen and desensitise tooth surfaces and help maintain oral hygiene. For these patients a product that lists fluoride as an active ingredient and posts the anti-bacterial properties of chlorhexidine (CHX) can help prevent the build up of bacteria.

Using interdental gels and brushes can also be beneficial as these will help the patient access those ‘hard to reach’ areas. Using a product containing bacteria fighting CHX will allow the fluoride to work to better effect, but patients would be well advised to use a non-abrasive formula to protect the tooth enamel from demineralisation.

A dual acting gel can be an ideal accompaniment to interdental brushes for oral hygiene issues of varying types and severity. It may be appropriate for practitioners to recommend an interdental cleaning product based on fluoride and supported by the antibacterial properties of CHX. Interdental gels are excellent products for the effective support of your patients’ interdental care regime and specially formulated, dual-action gels can provide patients with a convenient and effective ‘take-home’ method of cleaning interdental spaces.

That traditional interdental cleaning is no longer a priority for patients is obvious from the statistics cited by the British Dental Health Foundation, but many practitioners have high hopes that the next generation of cleaning products now available will encourage the British public to improve their dental hygiene. If these products can successfully motivate the masses, we may see a dramatic improvement in dental health into the coming decade.

The inventor of the Original Piezon Method has won another battle against the destruction of tissue when dental implants are performed. The magic word is dual cooling – instrument cooling from the inside and outside together with simultaneous debris evacuation and efficient surgical preparations in the maxilla.

COOLING HEALS
A unique spiral design and internal irrigation prevent the instrument’s temperature from rising during the surgical procedure. These features combine effectively to promote excellent regeneration of the bone tissue.

EMS Swiss Instruments Surgery MB4, MB5 and MB6 are diamond-coated cylindrical instruments for secondary surgical preparation (MB4, MB5) and final osteotomy (MB6). A spiral design combined with innovative dual cooling makes these instruments unique in implant dentistry.

CONTROL SAVES
Effective instrument control fosters atraumatic implant preparation and minimizes any potential damage to the bone tissue.

PRECISION REASSURES
Selective cutting represents virtually no risk of damage to soft tissue (membranes, nerves, blood vessels, etc.) An optimum view of the operative site and minimal bleeding thanks to cavitation (hemostatic effect) further enhance efficacy.

The new EMS Swiss Instruments Surgery stand for unequalled Swiss precision and innovation for the benefit of dental practitioners and patients alike – the very philosophy embraced by EMS.

For more information > www.ems-swissquality.com

EMS-SWISSQUALITY.COM
SAVE CELLS
NEW EMS SWISS INSTRUMENTS SURGERY – SAVING TISSUE WITH NEW INNOVATIONS IN IMPLANT DENTISTRY

Email www.tandex.dk for more information

Surgery stand for unequaled Swiss

Ems-swiss-quality.com

ESM +
ELECTRO MEDICAL SYSTEMS

EMS Swiss Instrument Surgery MB6 with unique spiral design and internal instrument irrigation for ultralow temperature at the operative site

“I FEEL GOOD”

For more information > www.ems-swissquality.com

The new EMS Swiss Instruments Surgery stand for unequalled Swiss precision and innovation for the benefit of dental practitioners and patients alike – the very philosophy embraced by EMS.
A look at the effectiveness of chlorhexidine-based mouthwashes

Howard Thomas discusses the advantages of mouthwashes in the treatment of periodontal disease, with a specific look at chlorhexidine-based products

The use of antiseptic mouthwashes as a secondary line of defence against the onset of periodontal disease has been in existence for approximately 40 years.

In addition to conventional brushing, mouthwashes offer a number of significant advantages for patients, helping to control the oral pathogens that lead to problems like halitosis, dental caries and of course, dental plaque biofilm formation.

However, for patients with manual dexterity issues who may find brushing difficult, as well as those recovering from implant or endodontic surgery, an antiseptic mouthrinse may be vital in maintaining good oral health and/or preventing the onset of infection.

Numerous clinical studies have sought to establish the effectiveness of the active ingredients commonly found in mouthwashes, including chlorhexidine (CHX), cetyl pyridinium chloride and plant extracts such as essential oils and chlorophyll in controlling the spread of supragingival plaque and gingivitis. Overall, it has been shown that mouthwashes containing chlorhexidine are by far the most proficient in controlling sub-gingival plaque, eradicating oral fungi and reducing the bleeding and inflammation associated with gingivitis when compared to other antimicrobial agents, including hydrogen peroxide.

Chlorhexidine is a highly effective bactericide, thanks to its capacity to set up chemical links with the anionic groups such as phosphates and sulphates found in the cell wall of bacteria, leading to an increase in cellular permeability and thereby destabilising the bacterial cell, ultimately leading to its destruction or eradication during brushing.

Although considered to be the ‘gold standard’ of chemical antiseptic agents, there are a few limitations and drawbacks that go along with using this otherwise highly effective ingredient.

One of the main disadvantages of using chlorhexidine is its tendency to cause staining on the teeth, especially in the inter-proximal areas and the mucous membranes on the back of the tongue, as well as the lead to discoloration of dental restorations and prostheses. This is caused by the chemical interaction of tooth-bound chlorhexidine and leftover chromogens from food or beverages and is known as the Maillard reaction.

New Look, New Products!

- Rapid sensitivity action in 1 minute
- Enamel protection
- Whiter teeth in 1 minute
- Low abrasion

For further information on this and any other product, please contact:
Purity Laboratories Ltd, 1st Floor, Broadway Studios, 20 Broadway, Hammersmith Broadway, London, W6 7AF
Tel: +44 20 8563 8887 or e-mail: info@beverlyhillsformula.com
www.beverlyhillsformula.com
The efficacy of chlorhexidine-based mouthrinses also contain alcohol, which has been known to cause irritation of the oral mucosa, leading to a stinging or burning sensation in the mouth. Currently, over-the-counter brands of mouthwash can contain anything from 18-26 per cent alcohol. Whilst there have been suggestions of a link between the alcohol content and oral cancer, a critical analysis of literature has failed to find evidence of a direct causal link and so far, the studies have been inconclusive.

However, the same study also concluded that there is no evidence that alcohol improved the effectiveness of anti-plaque agents. As demand for non-alcoholic mouthwashes has increased, the need to develop effective chlorhexidine-based mouthwash products with reduced negative side effects has become ever greater. Addressing this demand, several manufacturers have risen to the challenge to develop an alcohol-free chlorhexidine mouthwash.

In an effort to rectify the problems associated with chlorhexidine, several studies have looked at alternatives such as combining agents (ie sodium fluoride and cetyl pyridinium chloride) with CHX.

There is evidence to suggest that, when used together in low concentrations, the combination of CHX and fluoride provide additional benefits to patients, including the prevention of caries and the remineralisation of teeth, whilst also acting as an efficient prophylactic against oral diseases.11

There is also evidence to suggest that this combination is effective in tackling oral pathogens such as streptococci.12 Another long-term study sought to observe the anti-bacterial capacity and side effects of an ethanol-free lower concentration of chlorhexidine (0.05 per cent) combined with 0.05 per cent cetylpyridinium chloride, and found that it had an anti-plaque effect comparable to a 0.2 per cent chlorhexidine + alcohol solution, but with reduced subjective side effects: slightly less staining and better taste. However, such combinations, whilst effective, do not completely resolve the problem of alcohol and the need for patients to wait for a full 30 minutes after brushing in order to get the full benefits out of their chlorhexidine mouthwash. However, the use of SLS-free toothpaste can help patients get around this issue, even getting a double dose of CHX when using an SLS-free paste containing Chlorhexidine.

References


About the author

Fenning his degree in biochemistry, Howard worked in the pharmaceutical industry, became an established multi-million dollar business man and really established the market for health supplements. Subsequently, Howard has been involved in the nutraceutical industry, developing "natural remedies" and has been involved with many health-related organisations. He set up his own nutritional supplement companies for the human and veterinary markets and also has been director of a number of histobiochemistry start-up companies in the Cambridge area. And recently, his principal activity was as Chairman of Life Plus Europe, a successful multi-level marketing company supplying nutritional products on a personal import basis throughout Europe. In January 2001, he sold that business to the US affiliate and is where he now spends much more active role in the management and development of his own company Britannia Health Ltd. Howard is focusing on developing a range of natural products for the dental market. The dental market in terms of product development has been neglected by companies, yet over 90% of the population has some form of gum disease and suffer form more or less periodontal disease.